Homework 2 (Stellar Parameters and Spectra)

Exercise 2.1: Stellar Mass Measurement from Spectroscopic Binary Systems:

The maximum radial velocities measured for the two components of a spectroscopic binary are 100 and $200 \mathrm{~km} \mathrm{~s}^{-1}$, with an orbital period of 2 days.
i) What is the value of $M \sin ^{3} i$ for each star, where M is the mass and i is the inclination to the observer's line of sight of the perpendicular to the orbital plane.
ii) Find the mean expectation value of the factor $\sin ^{3} i$, i.e., the mean value it would have among an ensemble of binaries with random inclinations.
iii) Assuming the distribution of i to be random is not right. Is it? Comment.

Exercise 2.2: Stellar Parameters from an Eclipsing Spectroscopic Binary:

In an eclipsing spectroscopic binary, the maximal radial velocities measured for the two components are 20 and $5 \mathrm{~km} \mathrm{~s}^{-1}$. The orbit is circular, and the orbital period is $\mathrm{P}=5 \mathrm{yr}$. It takes 0.3 day from the start of the eclipse to the main minimum, which then lasts for 1 day.
a) Find the mass of each star. Since the binary is of eclipsing type, one can safely asume $\mathrm{i} \simeq 90^{\circ}$. Check to what degree the results are affected by small deviations from this angle, to convince yourself that this is a good approximation. (b) Assume again $\mathrm{i}=90^{\circ}$ and find the radius of each star. Is the result still insensitive to the exact value of i ?

Exercise 2.3: Relative Strengths of Absorption Lines:

The temperature of the solar photosphere is 5777 K and it has 500,000 hydrogen atoms for each Ca atom. The electron pressure is $1.5 \mathrm{~N} \mathrm{~m}^{-2}, \mathrm{Z}_{I}=2, \mathrm{Z}_{I I}=1$ for H and $\mathrm{Z}_{I}=1.32, \mathrm{Z}_{I I}=2.3$ for Ca. Estimate the relative strengths of the absorption lines due to hydrogen Balmer lines and those due to Ca II H and K lines (produced by electrons in the ground state of singly ionized Ca).

Exercise 2.4: Numerical Simulation of Exoplanet Orbital Orientation

This is an extra problem. You do not need to submit this. Suppose you wish to choose a random point on the surface of the Earth. That is, you want to choose a value of the latitude and longitude such that every point on the planet is equally likely to be chosen. In a physics context, this is equivalent to choosing a random vector direction in three-dimensional space.

Recall that in spherical coordinates θ, ϕ the element of solid angle is $\sin \theta \mathrm{d} \theta \mathrm{d} \phi$, and the total solid angle in a whole sphere is 4π. Hence the probability of our point falling in a particular element is

$$
p(\theta, \phi) \mathrm{d} \theta \mathrm{~d} \phi=\frac{\sin \theta \mathrm{d} \theta \mathrm{~d} \phi}{4 \pi} .
$$

We can break this up into its θ part and its ϕ part thus:

$$
p(\theta, \phi) \mathrm{d} \theta \mathrm{~d} \phi=\frac{\sin \theta \mathrm{d} \theta}{2} \times \frac{\mathrm{d} \phi}{2 \pi}=p(\theta) \mathrm{d} \theta \times p(\phi) \mathrm{d} \phi .
$$

1. What are the ranges of the variables θ and ϕ ? Verify that the two distributions $p(\theta)$ and $p(\phi)$ are correctly normalized-they integrate to 1 over the appropriate ranges.
2. Find formulas for generating angles θ and ϕ drawn from the distributions $p(\theta)$ and $p(\phi)$. (The ϕ one is trivial, but the θ one is not.)
3. Write a program that generates a random θ and ϕ using the formulas you worked out.
4. Modify your program to generate 500 such random points, convert the angles to x, y, z coordinates assuming the radius of the globe is 1 , and then visualize the points in three-dimensional space using any software.
5. Can you use this program to verify the results you obtained above regarding the average value of $\sin ^{3} i$, where i is the inclination of the orbit of exoplanets?
