Homework 2 (Stellar Parameters and Spectra)

Exercise 2.1: Stellar Mass Measurement from Spectroscopic Binary Systems:

The maximum radial velocities measured for the two components of a spectroscopic binary are 100 and 200 km s⁻¹, with an orbital period of 2 days.

i) What is the value of *Msin³i* for each star, where *M* is the mass and *i* is the inclination to the observer's line of sight of the perpendicular to the orbital plane.

ii) Find the mean expectation value of the factor $\sin^3 i$, i.e., the mean value it would have among an ensemble of binaries with random inclinations.

iii) Assuming the distribution of *i* to be random is not right. Is it? Comment.

Exercise 2.2: Stellar Parameters from an Eclipsing Spectroscopic Binary:

In an eclipsing spectroscopic binary, the maximal radial velocities measured for the two components are 20 and 5 km s⁻¹. The orbit is circular, and the orbital period is P=5 yr. It takes 0.3 day from the start of the eclipse to the main minimum, which then lasts for 1 day.

a) Find the mass of each star. Since the binary is of eclipsing type, one can safely asume $i \simeq 90^{\circ}$. Check to what degree the results are affected by small deviations from this angle, to convince yourself that this is a good approximation. (b) Assume again $i = 90^{\circ}$ and find the radius of each star. Is the result still insensitive to the exact value of i?

Exercise 2.3: Relative Strengths of Absorption Lines:

The temperature of the solar photosphere is 5777 K and it has 500,000 hydrogen atoms for each Ca atom. The electron pressure is 1.5 N m⁻², $Z_I = 2$, $Z_{II} = 1$ for H and $Z_I = 1.32$, $Z_{II} = 2.3$ for Ca. Estimate the relative strengths of the absorption lines due to hydrogen Balmer lines and those due to Ca II H and K lines (produced by electrons in the ground state of singly ionized Ca).

Exercise 2.4: Numerical Simulation of Exoplanet Orbital Orientation

This is an extra problem. You do not need to submit this. Suppose you wish to choose a random point on the surface of the Earth. That is, you want to choose a value of the latitude and longitude such that every point on the planet is equally likely to be chosen. *In a physics context, this is equivalent to choosing a random vector direction in three-dimensional space.*

Recall that in spherical coordinates θ , ϕ the element of solid angle is $\sin \theta \, d\theta \, d\phi$, and the total solid angle in a whole sphere is 4π . Hence the probability of our point falling in a particular element is

$$p(\theta,\phi) \,\mathrm{d}\theta \,\mathrm{d}\phi = rac{\sin\theta \,\mathrm{d}\theta \,\mathrm{d}\phi}{4\pi}.$$

We can break this up into its θ part and its ϕ part thus:

$$p(\theta,\phi) \,\mathrm{d}\theta \,\mathrm{d}\phi = rac{\sin\theta \,\mathrm{d}\theta}{2} imes rac{\mathrm{d}\phi}{2\pi} = p(\theta) \,\mathrm{d}\theta imes p(\phi) \,\mathrm{d}\phi.$$

1. What are the ranges of the variables θ and ϕ ? Verify that the two distributions $p(\theta)$ and $p(\phi)$ are correctly normalized—they integrate to 1 over the appropriate ranges.

- 2. Find formulas for generating angles θ and ϕ drawn from the distributions $p(\theta)$ and $p(\phi)$. (The ϕ one is trivial, but the θ one is not.)
- 3. Write a program that generates a random θ and ϕ using the formulas you worked out.
- 4. Modify your program to generate 500 such random points, convert the angles to *x*, *y*, *z* coordinates assuming the radius of the globe is 1, and then visualize the points in three-dimensional space using any software.
- 5. Can you use this program to verify the results you obtained above regarding the average value of *sin³i*, where *i* is the inclination of the orbit of exoplanets?