Problem Set 4: Central Force

1. Properties of Central Force Orbits:

a) Show that the eccentricity of a planet's orbit is given by:
$\epsilon=\frac{V_{\text {max }}-V_{\text {min }}}{V_{\text {max }}+V_{\text {min }}}$, where $V_{\text {max }}$ and $V_{\text {min }}$ are the maximum and minimum speed, respectively, of the planet in its orbit.
b) Show that the total energy of a planet of mass m is given by:
$\mathrm{E}=-\frac{\mathrm{GMm}}{2 \mathrm{a}}$, where a is the semi-major axis of its orbit around a star of mass M.
c) Using the above, show that the speed of the planet is given by:
$\mathrm{v}^{2}=\operatorname{GM}\left(\frac{2}{\mathrm{r}}-\frac{1}{\mathrm{a}}\right)$, where r is its distance from the star.

2. Finding the Nature of Central Force from a Given Orbit Equation:

a) Find the force law for a central force field if the corresponding orbit of a particle is given by $\mathrm{r}=\mathrm{Ae}^{\mathrm{a} \theta}$, where A and a are constants.
b) Find $U(r)$, as a function of angular momentum l, which is consistent with the above orbit. Note that we are looking for U and not $U_{\text {eff }}$.
c) Find the total energy of the particle in this orbit.

3. Correction to Kepler's 3rd Law:

(a) Using elementary Newtonian mechanics find the period of a mass m_{1} in a circular orbit of radius r around a fixed mass m_{2}.
(b) Using the reduced-mass formalism, find the corresponding period for the case that m_{2} is not fixed and the masses move around their CM being a constant distance r apart. Discuss the limit of this result if $m_{2} \gg m_{1}$.
(c) What would be the orbital period if the earth were replaced by a star of mass equal to the solar mass, in a circular orbit, with the distance between the sun and star equal to the present earth-sun distance?

4. Geometry of Ellipses in Polar and Cartesian Coordinates:

It was shown in class that any Kepler orbit can be written in the form $r(\phi)=c /(1+\epsilon \cos \phi)$, where $c>0$ and $\epsilon \geq 0$. Show that the equation can be written in Cartesian coordinates as the standard equation of ellipse, parabola, and hyperbola depending on the value of ϵ.

5. Stability of Circular Orbit:

Consider a particle of reduced mass μ orbiting in a central force with $\mathrm{U}=\mathrm{kr}^{\mathrm{n}}$ where $\mathrm{kn}>0$.
a) Explain what the condition kn >0 tells us about the force. Sketch the effective potential energy ($\mathrm{U}_{\text {eff }}$) for the case $\mathrm{n}=2,-1$, and -3 .
b) Find the radius at which the particle (with a given angular momentum l) can orbit at a fixed
radius. For what value of n is this circular orbit stable? Do your sketch confirm this conclusion? c) For the stable case, show that the period of small oscillations about the circular orbit is $\mathrm{t}_{\text {osc }}=\mathrm{t}_{\text {orb }} / \sqrt{\mathrm{n}+2}$. For what property of n , will this orbit be closed?

